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Neurons often respond to diverse combinations of task-

relevant variables. This form of mixed selectivity plays an

important computational role which is related to the

dimensionality of the neural representations: high-dimensional

representations with mixed selectivity allow a simple linear

readout to generate a huge number of different potential

responses. In contrast, neural representations based on highly

specialized neurons are low dimensional and they preclude a

linear readout from generating several responses that depend

on multiple task-relevant variables. Here we review the

conceptual and theoretical framework that explains the

importance of mixed selectivity and the experimental evidence

that recorded neural representations are high-dimensional. We

end by discussing the implications for the design of future

experiments.
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Introduction
The traditional view of brain function is that individual

neurons and even whole brain areas are akin to gears in a

clock. Each is thought to be highly specialized for specific

functions. This, however, does not fit with many observa-

tions, especially in higher-order cortex. For example,

training monkeys on a cognitive-demanding task engages

huge proportions of neurons in the prefrontal cortex (�40%

of randomly sampled cells). This means that training either

hijacks a huge slice of cortical tissue (and monkeys can only

learn 2–3 tasks before their brains reach capacity). Or

instead that neurons can do more than one thing. The

latter does seem to be the case. Many neurons in the

prefrontal and parietal cortices seem to be multitaskers.
Current Opinion in Neurobiology 2016, 37:66–74 
They behave differently in different contexts, as if they are

members of different ensembles. This is a property we

have termed ‘mixed selectivity’. Mixed selectivity neurons

have been reported in a large body of experimental evi-

dence, but only recent investigations have started to point

out their possible importance for coding and the imple-

mentation of brain functions. Mixed selectivity can mani-

fest itself as an ‘adaptive coding’ [1] of cortical cells whose

responses are highly diverse and change over time.

These responses encode multiple task-relevant variables

that include rules, sensory stimuli identity or features, and

motor responses or decisions [2–4,5��,6��,7–9,10�,11�,12�].
Mixed selectivity has also been reported in the hippocam-

pus, where single units can respond to multiple contextual

and episodic features [13–15,16��], and in the amygdala,

where neurons can be selective to specific combinations of

visual stimuli, temporal context and predicted reinforcers

during conditioning [4,17]). Why did the brain develop this

unexpected property? Wouldn’t it be easier for each neu-

ron or brain area to do one thing? It turns out, from a

computational perspective, mixed selectivity may be cen-

tral to complex behavior and cognition. A brain with neural

representations based on highly specialized neurons would

be hamstrung; only capable of learning a small number of

simple tasks. Mixed selectivity endows the computational

horsepower needed for complex thought and action. Here

we summarize theoretical arguments developed in the

computational neuroscience community that explain

why. We then review the experimental evidence that

supports the proposed interpretation of the computational

role of mixed selectivity.

Understanding the computational role of mixed

selectivity

Mixed selectivity neurons are selectively activated by

combinations of different task variables that cannot be

predicted by their responses to individual variables.

These neuronal responses are actually repeatable: the

neurons behave the same way in the same context, but

their selectivity is highly context-dependent. As a conse-

quence, the activity of any individual mixed selectivity

neuron doesn’t mean anything by itself. Only in the

context of other neurons it is possible to disambiguate

the information encoded by mixed selectivity neurons.

This fits with a recent update to the neuron doctrine

notion, that ensembles, not individual neurons, are the

functional unit of the nervous system [18].

However, encoding information is not enough. The in-

formation has to be explicit [19] so as to be accessible to

downstream structures. Take, for example, the retina. All
www.sciencedirect.com

http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2016.01.010&domain=pdf
mailto:sf2237@columbia.edu
http://dx.doi.org/10.1016/j.conb.2016.01.010
http://www.sciencedirect.com/science/journal/09594388


Neurobiology of behavior Fusi, Miller and Rigotti 67

Figure 1

(a) (b)

(c) (d)

f1

f2

f3

f1

f2

f3

Low-dimensional
   low separability 

High-dimensional
   high separability

f1 f1

f2f2

High-dimensional
   low generalization

Low-dimensional
   high generalization

Current Opinion in Neurobiology

(a), (b) Low and high-dimensional neural representations. The activity

of a neuronal population of three neurons is represented as a point

(visualized as a sphere) in the space of all possible patterns of activity.

The three axes represent the firing rates fk (k = 1, 2, 3) of the three

neurons. The four spheres represent the population responses in four

distinct experimental conditions (e.g. the responses to four sensory

stimuli). The dimensionality of the neural representations is the minimal

number of coordinate axes that are needed to specify the position of

all points. (a) The points lie on a plane and hence they ‘live in a low

dimensional space’ (2D). (b) A high-dimensional neural representation:

same as in panel (a), but now the four points representing the sensory

stimuli are no longer coplanar and they span three dimensions. This

representation has the maximal dimensionality. In (a) a linear readout

cannot be trained to separate the red from the yellow points as they

all lie on a plane. This is because a linear readout can be trained only

if there exists a plane (a hyperplane in higher dimensional spaces) that

separates the red from the yellow points, which is clearly not the case

here. This is a prototypical case of non-linear separability, and is

equivalent to the well-known exclusive or (XOR) problem. It becomes

possible to separate the yellow from the red points in (b), where the

four points define a tetrahedron. As this geometrical arrangement

gives the maximal dimensionality, all possible colorings of the three

points are implementable by a linear readout. (c), (d) Dimensionality

reduction can improve generalization. (c) Each shaded ellipse

represents the distribution of response vectors in one of two specific

conditions due to trial-to-trial noise. The centers of the clouds

corresponding to the mean firing rates are on a line, but the points of

the clouds are distributed across all two dimensions. In the example,

the ellipses are elongated along the direction orthogonal to the black

line that joins the centers of the clouds, indicating that noise is

particularly high in that particular direction. Due to finite sampling, we

might not be able to correctly estimate this noise structure, and this

could result in a suboptimal readout. Say for instance that we were to

train a linear readout only on the six points represented by the circles

in the figure. In that case the resulting classifier (represented by the

yellow separating line) would be clearly suboptimal with respect to the
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the information needed for visual perception and recog-

nition is there. However, the known circuits that are

capable of reading it out in any useful way (such as the

visual system) are overly complex. To determine if mixed

selectivity representations are useful in terms of making

information accessible to further processing stages, we

need a yardstick to determine what sort of representations

neural circuits can reasonably interpret. For this, we can

turn to artificial neural networks. Simply put, if an artifi-

cial network based on simplifying biological principles

can read out the relevant information, we assume the

brain can too. A conservative measure would be a linear

readout because it can be easily implemented as a weight-

ed sum and threshold operation by individual units of an

artificial network.

To understand the advantage of encoding information in

a population of neurons with mixed selectivity to non-

linear combinations of factors rather than a population of

highly specialized neurons (what we’ll call ‘pure selec-

tivity’ neurons), consider Figure 1a. Each of the axes

represents the firing rate of a different neuron, each one

showing linear tuning to one factor or a linear combina-

tion of two factors. In other words, neurons without

nonlinear mixed selectivity. Neuron 1 in the figure,

whose firing rate is denoted by f1, is selective to sound

in such a way that its activity increases linearly with

sound intensity; neuron 2 is selective to visual inputs

such that its activity increases linearly with visual con-

trast; the activity of neuron 3 is linearly related to either

of those factors or a linear combination of the two factors

(linear mixed selectivity). The four points represent the

responses of the three neurons (response vectors) in four

different conditions (meaning four different combina-

tions of the factors). The task is to respond in one way to

two of the combinations (shown in red) and in another

way to the other two combinations (yellow). Because the

neurons’ firing has only a linear relationship to the two

factors, these points are on a plane. A linear readout

would need to find a plane that separates the task

conditions of interest (red from yellow). But with linear

neural tuning, one cannot find a linear readout that can

separate yellow from red. One could find a readout that

separates one larger factor from the rest, such as all

conditions with loud sounds or low contrast, but it is

not possible to separate different combinations of high

and low signals.
overall distributions and would misclassify a considerable fraction of

response vectors. A way to limit this finite sampling problem is to

reduce dimensionality. In (d) the six points that were used to train the

classifier are projected onto the dotted black line, the direction that

discriminates between the two classes. Now, even with the limited

sample of only six points it is possible to infer a separating hyperplane

that would result in an optimal separation between the overall

distributions.

Current Opinion in Neurobiology 2016, 37:66–74
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Box How to determine the maximal dimensionality

If the number of neurons is larger than p, the number of points in

firing rate space, then the maximal dimensionality attainable by the

response vectors is equal to p. For example, if there are only two

distinct points in firing rate space corresponding to two task

conditions ( p = 2), then there is always a line going through them,

meaning that the dimensionality would be 1. To this we have to add a

degree of freedom due to the offset from the origin. The total

dimensionality is then 2, which is equal to the number of points. If the

neurons are highly specialized and exhibit pure selectivity, then the

dimensionality can be much smaller than p. To see this consider the

case of two populations of pure selectivity neurons, one that

encodes a task variable a and the other one that encodes a different

variable b. If these variables have k values each, then the maximal

dimensionality for each population is k � 1 (ignoring the offset).

When these two populations are combined together all values of a

and b can be combined in p = k2 different ways but the maximal

dimensionality would be 2k � 2 plus the offset, which would give

2k � 1. Clearly, for sufficiently large k, 2k � 1 can be much smaller

than k2. The gap becomes even larger when more than two variables

are considered. For example, for n variables, the maximal dimen-

sionality is kn but the upper bound for neural representations with

pure selectivity would be nk � 1. This indicates that the neural

representations based on highly specialized pure selectivity neurons

are significantly less efficient than those that incorporate non-linear

mixed selectivity neurons when multiple variables have to be

combined together. Also, it is important to note that the upper bound

on the dimensionality depends on the complexity of the task, or more

precisely on the number of distinct conditions. Simple tasks

correspond to low dimensional neural representations, regardless of

the number of recorded neurons (see also the discussion of [21]).

There are situations in which it is not obvious to determine

unambiguously the number of distinct conditions. For example,

consider an experiment that involves a continuous task-relevant

variable, like the direction of reaching in a motor task (see e.g. [22],

one of the experiments analyzed in [21]). The animal is required to

touch a target on a screen by executing reach movements in several

possible directions. The target can appear at 27 different locations,

corresponding to 27 discrete values of the reaching angle. One might

then assume that the maximal dimensionality is 27. However, this

postulates that the 27 conditions can be considered distinct task

conditions. If this is not the case, because for instance directions

corresponding to nearby angles are so similar to be barely

distinguishable, then the number of reaching angles overestimates

the maximal possible dimensionality on the response patterns. In [21]

the authors formalized this problem and they essentially proposed

that two conditions corresponding to nearby values of a task-

relevant variable should be declared distinct only if the correspond-

ing neuronal response vectors are distinguishable. That should then

be the criterion defining in which sense conditions are to be

considered distinct, which has to be used to bound the maximal

dimensionality. This kind of analysis applied to the previously

considered motor control experiment in the case where three

consecutive reaching angles correspond to approximately the same

neural response, would then reveal that the maximal dimensionality

is approximately nine. The actual dimensionality could be even

smaller if other correlations are present in the neural data. The

formalism of [21] can be extended to continuous variables that are

not discretized in the experiment, like time.
Consider the case in which one of the neurons (Neuron 3)

is a mixed selectivity neuron whose firing rate reflects a

non-linear combination of the other two factors. The

addition of just this one neuron makes the neural repre-

sentations tridimensional as the four points are now the

vertices of a tetrahedron. Now one can define a linear

readout that can separate any arbitrary combination of the

two factors. Using a different terminology taken from

machine learning, the four points can be ‘shattered’ [20].

Or alternatively, all possible colorings (i.e. all ways of

classifying the points as red and yellow) are implemen-

table. More generally, the number of classifications that

can be performed by a linear readout grows exponentially

with the dimensionality of the neural representations of

the inputs. As a consequence, a linear readout endowed

with high-dimensional inputs can implement a much

larger number of task-related responses. In general,

high-dimensional representations require non-linear

mixed selectivity of the kind illustrated in the previous

example. Neural representations that are based on highly

specialized neurons (pure selectivity neurons that are

selective to an individual variable), or that respond to

linear combinations of the task-relevant factors (linear

mixed selectivity) are low dimensional as exemplified in

Figure 1b. It is important to stress, that highly specialized

neurons could be encoding all the relevant information

about a task in segregated populations. However, these

representations would be low dimensional, and therefore

of limited use to a linear readout (see the Box for the

upper bound on the number of dimensions).

Besides non-linear mixed selectivity, the second ingredi-

ent that is necessary for high dimensionality is diversity:

different mixed selectivity neurons should exhibit differ-

ent response properties. In other words, they should

respond to different combinations of values of the task-

relevant factors. The neural activation should be hetero-

geneous enough to guarantee a large coverage of the

response space, generating what is technically known

as a basis. A direct measure of the diversity of the

neuronal responses has been proposed in [12�], where

the authors show quantitatively that neurons in the rat

posterior parietal cortex (PPC) are highly heterogeneous

when recorded while the animal performs a multi-sensory

decision task.

Diversity and non-linear mixed selectivity are essential

ingredients, but they might not be sufficient when noise

is factored in. Noise can be defined as the component of

the neuronal response that is not reproducible, as, for

example, the fluctuations of the neural activity across

different trials that correspond to repetitions of the same

experimental condition. Because of noise, in any realistic

situations the points in Figure 1a,b should actually be

replaced by clouds of points, where each cloud represents

the trial-to-trial distribution of the neural activity in a

specific condition. Noise can introduce activity compo-

nents that cause an increase in dimensionality. However,
Current Opinion in Neurobiology 2016, 37:66–74 
because of their non-repeatability, these components

cannot be useful for coding and discriminate response

vectors across conditions. For example, in Figure 1a the

four points are on a plane and the task of separating the

yellow from the red points cannot be performed by a
www.sciencedirect.com
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linear readout. When noise is introduced, the points will

be displaced out of the plane, and for some noise realiza-

tions it might become possible to find a separating plane.

However, this separating plane can only work for the

specific noise realization to which it was (over)fit, and it

will not solve the separability problem for other noise

realizations. In general, noise components actually reduce

the discriminability along their direction, even when the

representations are high-dimensional as in the case of

Figure 1b. Indeed, it is easy to imagine a situation in

which the noise fluctuations are so large, that distinct

conditions become difficult to discriminate (e.g. when the

fluctuations are larger than the average distance between

two clouds of points). In the section ‘How to measure

dimensionality’ we discuss one possible way of determin-

ing dimensionality in the presence of noise.

High dimensional representations are not always desir-

able. Some situations actually require some form of

dimensionality reduction. An example are classification

tasks, which often benefit from representations that ex-

clusively contain information that is relevant for discrimi-

nating among inputs in distinct classes, and hence are

more robust to variations along unimportant input dimen-

sions. We illustrate a simple example of dimensionality

reduction in Figure 1c,d. where we consider two neurons,

each responding to a different sound source (e.g. one to

the sounds that arrive to the right ear and the other to the

sounds that come to the left ear). Say that the task is to tell

which sound is louder. The sounds are generated accord-

ing to some distribution, which are reflected by the

distributions of the firing rates of the two neurons repre-

sented by ovals in the figure. These distributions are

chosen to make the task difficult, as the two sound

intensities are often very hard to discriminate. If a linear

readout is trained on a small number of sample sounds

(those represented by spheres in the figure), it is possible

that the resulting separating line is not the optimal one

that would separate the two ovals and some of the future

sounds will be misclassified. A better performance can be

achieved by first projecting the data points on an appro-

priately chosen lower dimensional space, and then train-

ing the readout. In this case it would be desirable to

project onto the line that unites the centers of the two

distributions, reducing the dimensionality from 2D to 1D.

This dimensionality reduction corresponds to the extrac-

tion of the relevant feature, which in this case is the

difference in intensity between the two sounds. In short,

the brain needs to reduce dimensionality to get rid of

factors that are not relevant but at the same time recast

the remaining factors into a high-dimensional space so

that they can be processed to generate complex behavior.

How to measure dimensionality
Dimensionality is the minimal number of coordinate axes

needed to specify the positions of all points in firing rate

space. In the case of Figure 1a, dimensionality is 2, as all
www.sciencedirect.com 
points are contained by a plane. In Figure 1b, dimension-

ality is 3, as the points are the vertices of a tetrahedron, a

3D object. More formally, dimensionality can be defined

as the rank of the matrix F whose columns represent the

firing rate vectors. The number of rows would be equal to

the number of neurons, and the number of columns are

equal to the number of conditions. The practical problem

with this definition is finite sampling noise, since any

imprecision in estimating the actual firing rates by aver-

aging out trial-to-trial fluctuations in the activity artificial-

ly inflates dimensionality estimates. For example, in the

Figure 1a, the noise would pull the points out from the

plane and the rank of F would be maximal (as large as the

number of conditions, assuming that the number of

recorded neurons is larger), making us unable to discrim-

inate between the geometry of Figure 1a (low dimen-

sional) and the one of Figure 1b (high-dimensional).

A useful method of estimating dimensionality that takes

noise into account has been recently developed utilizing

techniques related to Principal Component Analysis

(PCA) [23]. PCA identifies the directions along which

the points in the firing rate space have the broadest

distributions (variance). These directions are called

principal components and are characterized by the

amount of variance in the data that can be captured

or ‘explained’ by them. For example, in Figure 1a, two

components will be the axes that define the plane, and

the third one would be orthogonal to it. The variance

will be large for the first two components, and zero for

the third one. So the dimensionality, which is 2, is

simply the number of principal components with a

non-zero variance. If a small amount of noise is added

to the firing rates, then the third component will be only

slightly different from zero, and one could still estimate

the right dimensionality for moderate and known noise

magnitudes by cutting off the smallest components.

More formally, the eigenvectors of the covariance ma-

trix FF> are the principal components, and the corre-

sponding eigenvalues determine the variance that is

explained by each component. In the noiseless case,

the number of non-zero eigenvalues is equal to the rank

of the matrix F. In the noisy case, the dimensionality

can be defined as the number of eigenvalues that are

above some threshold. The noise threshold can be

estimated from the trial-to-trial fluctuations of the neu-

ronal responses [23].

Notice that this method allows us to count all dimensions

along which there is some variation, whether they are

useful or not for the task. For example, in Figure 2a,b, the

strongest principal component is actually orthogonal to

the line along which the three clouds of points can be

separated. Moreover, this method can be inaccurate as it

usually provides a lower bound on the dimensionality,

given that the threshold is estimated on the basis of the

largest noise component.
Current Opinion in Neurobiology 2016, 37:66–74
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Figure 2
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Measuring the dimensionality of neural representations: the effects of noise and correlation on different estimation methods. (a) The plot depicts

the responses of three neurons ( f1, f2, f3) to three task conditions (red, green, blue). The 3D coordinates of each dot correspond to the joint

response of the three neurons in an individual trial. Color corresponds to the condition eliciting the response. The spheres indicate the mean trial-

averaged activity in the three conditions. Panel one: example neurons display high positive pairwise noise correlation (represented by the

transparent ellipsoids) between neurons that results in a large trial-to-trial variability along the direction pointing to the positive orthant for all three

conditions. Panel two: the same data of panel one from a different angle in the 3D activity space. This shows that, along appropriately chosen

directions, the response vectors in the three conditions can be separated from each other with a very high signal-to-noise ratio. The correlated

noise along the (1,1,1)-direction does not limit the discrimination between population response patterns, since it is orthogonal to the directions

separating the trial-averaged activity patterns. (See e.g. [58–60] for more general consideration regarding when and how noise correlations can

help or harm signal decoding.) (b) Looking at the absolute variance of the signal and noise separately in the example in (a) might give the

misleading impression that the correlated variability ablates all coding information, since for instance a PCA analysis (see e.g. [23]) shows that the

noise component is much higher than the signal in the two coding directions. In fact, since the main noise component lies along a direction that is

orthogonal to the coding directions, it does not have any influence on decoding the condition from the population response patterns. (c) Use of

population decoding to characterize response patterns dimensionality. Despite the high noise (panel (b)) an appropriate decision boundary can

discriminate any arbitrary binary partition of the task conditions (in the case of three conditions there exist 23 = 8 such partitions). This means that

a linear decoder can be trained to implement any possible binary function over task conditions using the corresponding response patterns as

inputs. In addition, this is related to the dimensionality of the vector space effectively spanned by the trial-averaged response patterns: the three

average within-condition response patterns lie on a 2D space. Because this dimensionality is exponentially related to the number of binary

functions that can be implemented by a linear decoder, it can serve as a measure of the number of responses that can be reliably implemented

by downstream circuits that are at least as complex as a linear readout. (d) Example where the same number of average response patterns

effectively lie on a lower dimensional space (in this case a line). In such a situation, not all binary partitions of inputs can be implemented by a

linear classifier, as indicated by the non-separable partitioning of patterns in the second plot.
An alternative method that is more directly related to

the computational advantages of dimensionality has

been employed in [6��]. The fact that apparent increases

in dimensionality due to noise components allow for
Current Opinion in Neurobiology 2016, 37:66–74 
separations that do not generalize to different noise

realizations suggests that dimensionality can be estimated

by counting the number of linearly separable colorings of

the firing rate vectors through cross-validation. The idea
www.sciencedirect.com
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is that separations that exploit non-repeatable noise com-

ponents will be revealed as artifactual if one tests them on

different realizations of noise (corresponding to different

trials). This means that we can estimate dimensionality

by counting the number of linearly separable colorings of

the firing rate vectors that maintain a high cross-validation

performance across noise realizations (see Figure 2). An

advantage of this method is that it actually takes into

account the shape and orientation of the noise distribu-

tions in relation to the coding directions that separate the

points. The technique in [23] assumes a worst-case sce-

nario where the largest noise component is aligned to the

coding dimensions that are at most as large as the noise

(e.g. in Figure 2c, dimensionality would be 1, and not 2 as

for the PCA analysis).

Dimensionality transformations
Quantifying the dimensionality of the neural representa-

tions offers an informative glimpse on how sensory and

cognitive signals are being processed in the recorded

brain areas. This observation derives from recent compu-

tational studies aimed at understanding neural coding in

sensory and higher-order cortical areas through the lens of

modern machine learning methods such as deep artificial

neural networks [24]. One of the fundamental insights

gained from such an interdisciplinary effort is that the

solution of tasks that require processing of natural sensory

stimuli (natural images, speech, language) benefit from a

decomposition in multiple hierarchical elaboration stages

of increasing level of abstraction, a notion that has clear

roots in the pioneering work of Hubel and Wiesel [25].

The ultimate goal of such stagewise processing is to

encode the relation between high-dimensional sensory

inputs and low-dimensional decisions variables.

A central strategy employed by successful deep neural

networks is to strike a balance between dimensionality

expansion and dimensionality reduction as processing

progresses throughout the hierarchy.

Dimensionality reduction in sensory processing

Dimensionality reduction (obtained for instance by pool-

ing among competing input units guarantees better gen-

eralization by enforcing invariance to input changes that

should not affect the final output [26–30]. This is impor-

tant in object recognition, where it is desirable that

different views of the same object (say, due to slight

changes in pose, position, and so on) all result in the same

classification response. Geometrically this can be concep-

tualized by a transformation that collapses a large set of

high-dimensional retinal inputs all corresponding to dif-

ferent variations of an object to the same high-level

representation (see Figure 1c,d). The resulting represen-

tation clearly allows for a potentially large reduction in

sample complexity, since the label provided by a training

sample can be generalized over all the inputs correspond-

ing to the same object [26,28].
www.sciencedirect.com 
Invariance computation has been proposed as an algorith-

mic principle for object recognition and a hallmark of the

primate visual system [19,27], and is consistent with the

selectivity to highly specific visual percept of neurons

famously reported in inferotemporal (IT) cortex [31].

What’s more, deep neural networks that are optimized

to perform object recognition have been recently shown

to spontaneously generate in their higher stages of pro-

cessing neural activations that are highly predictive of V4

and IT cortex responses [32��].

Dimensionality expansion for input separability and

output flexibility

As we pointed out in our first example, the opposite

operation to dimensionality reduction, dimensionality

expansion, is important for cognition if one is to perform

tasks that involve decisions over multiple variables (see

Figure 1a,b). Dimensionality expansion is one of the

fundamental operations performed by modern machine

learning algorithms (Support Vector Machines [33]) and

by deep artificial neural networks [24]. It has the function

of guaranteeing high-margin separation and discrimina-

tion between inputs that have to generate distinct

responses (see e.g. [6��,34]). Moreover, high-dimensional

neural representations are also a crucial component of

dynamical models of recurrent neural networks like echo

state machines or liquid state machines [35–40]. These

models exhibit a very rich behavior similar to the one

observed in cortical recordings and can solve complex

tasks that require some form of short term or working

memory. They do that by non-linearly mixing the current

state of a recurrent network with the external input,

generating high-dimensional neural representations that

are continuously updated with information about recent

sensory stimuli. Dimensionality is often expanded as a

result of an iterative procedure that trains intermediate

layers of hidden neurons (e.g. with back-propagation

[41]). It can also be achieved by engineering neurons

that display mixed selectivity simply by choosing the

proper synaptic weights (if the tuning curves in the inputs

are known). For example, mixed selectivity to the retinal

location of a visual stimulus and the position of the eyes

can be generated by gain fields that represent the stimu-

lus position in order to determine reach movements in

joint coordinates [42–44]. This kind of mixed selectivity

to stimulus identity and to a context signal has been used

to model visuomotor remapping [45–48].

An alternative and surprisingly general approach for gen-

erating high-dimensional neural representations is to

introduce layers of non-linear neurons that have random

synaptic weights. Random projections are extremely effi-

cient at generating mixed selectivity and expand di-

mensionality (e.g. in [35–39,49]), without compromising

the ability to generalize [50,51]. The analysis of the

patterns of connectivity between glomeruli and Kenyon

cells revealed that random projections could be the
Current Opinion in Neurobiology 2016, 37:66–74
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strategy to expand dimensionality in the olfactory system

of the drosophila [52�]. Interestingly dimensionality in

sensory areas is a quantity that recent imaging studies

suggest being preserved across individuals. Indeed, it is

known from fMRI and electrophysiological studies that

the dissimilarity matrix, which essentially contains the

distances between the points in the firing rate space and

hence determines the dimensionality is often invariant

across subjects (hyperalignment) [53], and across species

[54].

Measures of dimensionality and their
correlation with behavior
Recent experimental recordings in primates during the

execution of a cognitive working memory task showed

that the dimensionality of the neural representations in

pre-frontal cortex reaches the maximal value accommo-

dated by the stimulus-response space [6��]. Crucially,

both in rodents as well as in primates it was also observed

that dimensionality in frontal areas collapses on error

trials, suggesting that the high dimensionality of the

recorded representations is important for correct execu-

tion of the task [6��,55]. Interestingly, pharmacological

intervention has also been recently shown to affect di-

mensionality. Specifically, moderate dosage of amphet-

amine enhanced the separation of high-dimensional

components of PFC activity. This effect was however

reversed at higher concentrations [56].

The collapse of dimensionality preceding errors could

have at least two possible explanations: the animals make

a mistake because of a failure of perception or memory

(e.g. when one of the sensory cues is not seen, or one is

forgotten) or the error is due to a more subtle problem

forming the mixed combinations of information. It was

found in [6��] that the second explanation seems to be

correct, as the identity of the two visual cues could still be

decoded with high accuracy on error trials. This suggests

that mixed selectivity neurons play an important role in

representing the information about the visual cues in a

specific high dimensional format that can be utilized by

downstream circuits to generate behavior. This hypothe-

sis then predicts that a collapse in dimensionality impairs

the ability of downstream readout neurons to produce a

correct response, explaining the correlation between a

drop in dimensionality and behavioral errors. Finally, it

was shown that the collapse in dimensionality has to be

ascribed to a change in the statistics of the non-linear

mixed selectivity component of the neuronal responses

[6��].

Conclusions
The cortex is not just a patchwork of highly specialized

cells, each neuron is pretty much unique in its response

properties and there is a good computational reason for

this diversity: neural representations based on pure se-

lectivity greatly limit the type of responses that can be
Current Opinion in Neurobiology 2016, 37:66–74 
implemented by downstream readouts. However, it is

worth stressing that there are situations in which highly

specialized cells can be beneficial. For example when the

task depends only on a single variable, then the best

representations are those that encode just that variable.

Given the diversity of the neurons, it is then important to

consider and analyze their activity at the population level.

In particular, in the search for the brain areas that are

involved in a particular task, one should consider not only

whether the task-relevant information is represented, but

also in what way it is represented. In tasks in which the

decisions of the subject depend on multiple variables, we

predict that the brain areas that are causally linked to

behavior are those that exhibit highest dimensionality. In

experiments aimed at testing this hypothesis it would be

important to make the task sufficiently complex so that

dimensionality varies in a wide enough range to easily

detect changes. The range is essentially determined by

the maximal dimensionality, which depends on both the

complexity of the task (essentially the number of inde-

pendent conditions of the experiment, see the Box for

more details) and on the correlations between neural

representations. It would be advisable to make the task

as complex as possible, which means having a large

number of different conditions, but still compatible with

the ability to repeat each condition a sufficient number of

times to collect enough statistics about the recorded

activity.

Dimensionality is a global property of the geometry of the

neural representations, and it can be studied also using

fMRI multi voxel pattern analysis (see e.g. [53]). Studying

brain areas with high-dimensional representations and no

anatomical organization, which would be rich of mixed

selectivity neurons, might require techniques like repe-

tition suppression to determine accurately the dimension-

ality of the neural representations [57].
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